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Electronsareinjected into 368-m-long,
racetrack-shaped booster synchrotron

EXPERIMENT
ASSEMBLY AREA

-’
WING

/ V INJECTION
= \ 0 -

LOW-ENERGY
UNDULATOR
TEST LINE

®

EXPERIMENT



Booster raises e- energy torelativistic
7 GeV -nearly the speed of light
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7 GeV dectronsinjected into 1104-m-
circumference storagering
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Electrons orbit for hoursin storagering, emitting
synchrotron radiation from undulators....
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and bending magnet beamlines
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Polarization-dependent spectroscopy

Helicity dependent X-ra emission]P

spin polarized density o

Photoemission Microscopy

Spatial resolution target of 2 nm

rovides information concerning
bulk occupied states

eMagnetic contrast:
e Domain imaging
e Ground states in nanoscale systems
e Interactions in particle arrays
e Finite size effects
e Chemical contrast
» Self-assembled systems
e Segregation
» Local electronic structure
e Buried layers (~5 nm)
= Soft x-ray advantages:
« High magnetic contrast
e Access to TM, RE, semiconductors
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Figure 1. Magnetic PEEM images of the 5001000 nm series of Co dots

Observe magnetic images, within single dots and correlations
among dots, as the spacing changes
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Nano-Focusing of X-ray Beams

Brilliance = Radiated Power /0.1%BW / Unit Area / Unit Solid Angle at the Source

Brilliance is a conserved quantity in perfect optical systems

Useful in designing beamlines and synchrotron
radiation experiments which involve focusing to

small areas.
)

Zone Plates as Focusing
Elements

Routine Focal Size at APS: 10 ke ————>100 nm
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Tools for Nanoscrence

Hard x-ray nanoprobe

- Scan real and reciprocal
space in nanovolumes
Adaptive optics with . _—
Multi-parameter

“smart” scans

Hard X-ray Nanoprobe | jm=e= e
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Haxl Xomm Fraspn
rovap gl pheany

detmrior
Srmia
% ke
"_“,;{f’*' il % Unique, versatile instrument to study individual
’ﬁ-f— —, nanostructures (30 nm spatial resolution)
# " | % Quantitative atomic-scale structure, strain, orientation
imaging

« Sensitive trace element and chemical state analysis

«» Ability to penetrate overlayers, environments, fields
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High-resolution elemental maps of a
21 ym x 21 ym area of a single nucleus containing

3.6x10 ¢ nanoparticles

TiO2-DNA nanocomposites were
synthesized in an attempt to develop
them into nanodevices that would be
able to enter cells and function in vivo
and in situ.

The nanocomposites are introduced
into cells using standard transfection
methods and translocated into the cell
nuclei.

X-ray micro-fluorescence is crucial in
quantifying the success rate of
transfection and revealing the
intracellular distribution of the
hano-composites.

T Paunesku, T Rajh, G Wiederrecht, J Maser,
S Vogt, N Stojicevic, N. Protic, B Lai, J Oryhon, M Thurnauer,
G Woloschak, Nature Materials 2 (2003) 343-346
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Coherent XRD from a cubic silver single nanocrystal

Transverse coherent flux from APS
Undulator A: F.~ 10 ph/s/0.1%BW

Measure single nanocrystal diffraction
pattern.

Observe 5 - 10 high contrast
fringes.
Results agree with 2D

calculations of projections
of a nanocube.

UNICAT

2 % 10 nm*®

I. Robinson, F. Pfeiffer, | Vartanyants, Y Sun, Y Xia, Opt. Express 11
2329 - 2334 (2003)




Studies of insect respiration using phase-enhanced,

time-resolved x-ray imaging

X-ray phase-contrast images taken
in real fime of living and breathing
insects show how they breathe.

Before these studies, it was thought
that insects breathe through passive
gas diffusion or changes in internal
pressure.

The tracheae were inflated at rest
and then were squeezed.

This technique is now being used to
study beeftles, insects and fish in
real time.

trachea

- _compressed

MW Westneat, O Betz, RW Blob, K Fezzaa, WJ Cooper,

W-K Lee, Science 299 (2003) 558 - 560 15



Coherent X-ray Diffractive Imaging

(a) A SEM image of a double-layered

sample made of Ni (~2.7x2.5x 1 pum3)  (b) A coherent diffraction pattern from (a)
(theresolution at the edgeis 8 nm)

J Miao, T Ishikawa, B Johnson, EH
Anderson, B Lai, KO Hodgson
Phys. Rev. Lett. 89, 088303 (2002).

(c) An image reconstructed from (b)
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The Reconstructed 3D structure
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The reconstructed bottom pattern

An 1so-surface rendering of the reconstructed 3D structure
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Time Domain Science

Proton Atomic
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Typical Bunch Filling Patterns at APS

Singlet 23 Bunches
Normal Fill Pattern

I Jsﬁl.;lﬂ

Asymmetric (Hybrid) 1or3+8x7
Special Operating Mode

A

T sequential bunches

51
nsec
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Shock waves generated by a supersonic liquid jet
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AG MacPhee, MW Tate, CF Powell, et al.,
. : Science, 295, 1261 (2002).
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v Supersonic liquid jet can generate shock waves
v' X-radiographs yield characteristics of the shock waves
v" The shock waves can be quantitatively simulated

Schematic
o Key Collaborators
= - ok = J. Wang's group
i APS
\ | | = S.Gruner's group
7 jr' Cornell U.
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v" Two phases: liquid particle and ambient gas

v’ Discrete particle tracking




Time-resolved Crystallography/Spectroscopy

If a reaction can be initiated in a crystal, simultaneously
throughout the crystal, then Laue photography or x-ray
spectroscopy can capture the structural changes or charge
transfers at the 700 ps (1019 s) to ms (103 s) timescale.

Light-initiated reactions can be studied using the Laue method.

Synchrotron i
Pulse
— ~
White/Mono Belam CcCch
shutter omputer | Camera
d\-J control light
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Making a movie of chemical reactions
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Simone Techert, 2001
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Protein Conformational Relaxation and Ligand Migration in
Myoglobin: A Nanosecond to Millisecond Molecular Movie
from Time-Resolved Laue X-ray Diffraction.

CO ligand is photo-
dissociated by a 7.5 ns
laser pulse, and the
subsequent structural
changes are probed by
150 ps X-ray pulses at 14

laser/X-ray delay times
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V Srajer, Z Ren, TY Teng, M Schmidt, T Ursby, D Bourgeois, C Pradervand,
W Schildkamp, M Wulff, K Moffat, Biochemistry 40: 13802-13815 (2094)




constant-Current or “Top-Up”Operation

Conventiona e
1 Fill |

24
APS is first facility to begin 'Top-Up’operation starting in 1999



Maximizing APS Brilliance
£ 1\

Lower Emittance Undulators
e, ®5x10-% E? @3 nm-rad Length: 5m
4 nm.rad — 2nm.rad 1
10m
Type: Superconducting
Variable -Period

Ultimate Enhancement of APS:
Average Brightness: 10¢%-23 ph/s/0.1%BW./mmi/mradf
Peak Brightness: 10?425 ph/s/0. 1%BW/mné/mrad?




Log Average Beam Brilliance
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APS Research Groups by Sectors and Disciplines
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