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Motivation

 Aswelook to iImprove properties of
materials, their structures become more
complex

— May use defects or local ordering to change
properties
— Crystallite sizes are often small by necessity

—> Powder diffraction



Why use both neutrons & Xx-rays?

 In powder diffraction one never has more
than enough data

Why use high energy x-rays?

e S0 that one can repeat neutron
measurements under extreme T, In Situ, etc.
conditions.



Questions?



Why Neutrons?

e Diffraction:
—scattering is independent of Z
(good for light atoms)
(isotopic contrast variation)

—scattering lengths are constant
with Q (better structural
precision)

—heutrons scattered by electron
spin (magnetic structure)

—many metals are “transparent”
(insitu, high & low T, H field)

—reflectometry: contrast vs
depth (direct phasing)

» Spectroscopy:.

—scattering intensity oc Cross-
section (easy to model)

—o salection rules

—simultaneously measure AQ
(momentum) & Am (energy)
==>time & distance

—greatest sensitivity for H
—time scal e spans 10/
—distance scale spans 103
(Unique capability)
(Fast measurements or dilute
systems)



Crystallography &

Materials Characterization

e High Resolution Powder
Diffractometer, BT-1
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Zeolitic Materials

» Zeolites are porous aluminosilicate
minerals [ naturally occurring]

e ...built from tetrahedral SO, and
AlO, units

e Charge balance requires extra-
framework cations:

M, (AlO,), (SIO,) .,

Many other framework atoms can be | IR
used to create zeolitic materials "

Used for catalysis, selective
adsorption, ion exchange...



Research Goals

e Determine framework topologies
* Find factorsthat affect cation siting
L ocations of adsorbed species

Single crystals arerarely available and even
when available may not represent the bulk
material



Simple case: CaLSX

X-rays are not enough

e LSX =>1:1Si:Al X
(Faujasite)
e Cubic, Fd3

e small, constrained,
asymmetric unit

o Ideal specimen: diffracts
beautifully

Vitale, G., Bull, L. M., Morris, R. E., Cheetham, A. K., Toby, B. H., Coe, C. G,
and MacDougall, J. E., "Combined Neutron and X-Ray-Powder Diffraction Study
of Zeolite Ca LSX and A ?H NMR Study of Its Complex with Benzene", Journal
of Physical Chemistry 99, 16087 (1995).



Cal SX:
Neutrons vs. X-rays

e Neutrons alone: ’ uﬁfﬁ |
— detailed & precise ) :‘:'f"):ﬁ; ;
framework geometry o o W00
— inaccurate Ca positions vl Q;'
— wrong Ca occupancies! ) Sy : O:Q,I
* Synchrotron X-rays alone: ﬁ oy
— insensitive to framework A

Excellent fit with Neutron & X-ray combined



Even with a single xtal: RUB-29

1st lithosilicate to be RUB-29 is stableto >450 C
fully characterized RUB-29 is has unusual
LiO, is more flexible than stability
other zeolitic building — heating to >450 C
blocks — multiple dehydration cycles
i i1 - e Most 1:1 Aluminosilicates
Lithosilicates have potential degrade casily

for highest framework

lon exchange applications?
charge

. . RUB-29 is aionic conductor
(LiIO)*n(SO,)1.n _ . .
VS NMR: All Li are mobile <250 C
(TO,)(SIO,),., — battery/fuel cell applications?
— High densities of cations



RUB-29: A new zeolitic family (lithosilicates)

Dr. So-Hyun Park
SUNY Sony Brook/Ruhr-U-Bochum/NCNR

Exceedingly complex zeolitic material:

35 framework atoms (4 Li)
11 extra-framework (4 L1)

~ Framework structure determined from
 10x10x2 pm single crystal (hair >50um)

" «Neutron data needed to find L1

# sLayered silicate “ glued” by LiO, layers

. First observation of two building units

. (stable only with Li)

i Park, S.-H., Parise, J. B., Gies, H., Liu, H.,
Grey, C. P., and Toby, B. H., Journal of the
American Chemical Society, (2000).




Intensity

RUB-29: Superb Fit
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CIT-1. Unraveling how zeolites form

Many zeolitic materials are synthesized using organic
“structure directing agent” (SDA) cations

CIT-1 illustrates interesting zeolite-SDA interactions

..........

J
@ < 1 Makes CIT-1 (~1% stacking faults)
2 Makes SSZ-33 (similar to CIT-1,
but with >30% stacking faults) »
N(CH,},
@ < 3 Cannot be used to make either CIT-1 or SSZ-33

Why?



There s no obvious difference
between the organic species

no faults faults nelther
A ;a-.:fbu- fﬁ%ﬁ* ﬂ--...,l,f;f’\ ‘*ﬁm,
v e ./
L '*;Z;}L_ ‘;;;zf-::'J'IJI ll-l |
3



CIT-1: Structural Analysis

Synchrotron & neutron powder data with
partially deuterated “as synthesized” sample
— symmetry of SDA much lower than CIT-1

Visually fit SDA to difference Fourier
— two superimposed SDA orientations needed
— Reasonable fit to x-ray & neutron data

— Problem: occupancy ~4 SDA cations/unit cell
e |iterature value, from TGA is 3!

e |sthisstructure right? (unigueness problem)



CIT-1: Molecular Modeling

« Commercial Monte Carlo rigid body
Insertion (M S| Solids Docking)

— no stable models with 4 SDA per cell
— numerous models with 3 SDA per cdll

 Anaysisof lower energy models:

— SDA cations populate only three orientations
(labeled as A, B & C)

How do these model s fit the data?



Which of the three fits the data?

s
1
_-I : :-
-!‘l' Mh__ﬁﬁfh; iuj:-”b A

g

o s i B

=

_WW& MMW C

None of the above!



Right

answer: 3/4A+1/4B!

e Using all three orientations and refining
occupancies yields an adeguate fit:

~ 3 molecu
~ 1 molecu
~ 0 molecu

es/call in orientation A
e/cdl In orientation B
es/cdll in orientation C

A & B cannot be distinguished by x-rays
* Refined positions ~same as initial approach
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Intensity (counts)
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But, can four molecul es fit?

Optimize with molecular modeling
— Very compact structure
— No unfavorable interactions
— ~ same as crystallographic model
Yes!
* More experiments:

— prompt-y also gives 4 SDA/Cdl
— repeat TGA: 3.4 SDA/Cdll




How do SDA 1,2 & 3 Compare’>

» Optimize packing of each SDA, 5 hu‘
4 cations per cell with MM
— SDA 1 & 2 agree within 4.5 kcal
— SDA 31s55 kcal less stable

This explains why SDA 3 does not -g / o & ,Lu
make CIT-1while1& 2do  * n e S



Why no stacking faults with SDA 17
e Repeat packing ssmulations B %
ina*“faulted” cell SCIE

— 1 & faults: -41 kcal/mol ‘"’ il o =

_ 2 & faults: +5 kcal |

Opposite of expected result!



CIT-1: Conclusions

« Use caution interpreting Monte-Carlo
results for “key in lock” problems

e Crystallography and Molecular Modeling
are complementary & are in agreement

e Explained why SDA 3 does not make CIT-1

o Stacking faults likely a kinetic phenomenon

Toby, Brian H., Khosrovani, Nazy, Dartt, Christopher B., Davis, Mark E.,
and Parise, John B., "Structure-directing Agents and Stacking Faults in
the CON System: A Combined Crystallographic and Computer
Simulation Study.", Microporous and Mesoporous Materials 39, 77
(2000).



Understanding the M 1/M 2 Propane
Ammoxidation Catalyst

Why: world use of acrylonitrileis 1010 |bs/year
— made from propene
— propane much cheaper

Propane catalyst is a multi-phase mixture of two
very complex layered (Mo,V,Te,Nb) oxides

How:

e Combinatorial synthesis. enhanced concentration
of each phase.

 TEM: framework topology
o X-ray: approximate structure
« Neutrons: oxygen-metal distances
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Fig. 2. A schematic mechanism for propane ammoxidation by the M1 catalyst that details the

cation centers believed to be responsible for reactive process [3].



Conclusions

* \When characterizing complex powder samples, x-
ray diffraction is often not enough

e Even x-rays and neutrons together may leave

Important questions unanswered (need TEM,
computation,...)

e Future: need to study functional materialsin
something approximating working conditions
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